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Abstract—An efficient three-dimensional solver for the solu-
tion of the electromagnetic fields in both time and frequency
domains is described. The proposed method employs the edge-
based finite-element method (FEM) to discretize Maxwell’s equa-
tions. The resultant matrix equation after applying the mass-
lumping procedure is solved by the spectral Lanczos decompo-
sition method (SLDM), which is based on the Krylov subspace
(Lanczos) approximation of the solution. This technique is, there-
fore, an implicit unconditionally stable finite-element time and
frequency-domain scheme, which requires the implementation of
the Lanczos process only at the largest time or frequency of
interest. Consequently, a multiple time- and frequency-domain
analysis of the electromagnetic fields is achieved in a negligible
amount of extra computing time. The efficiency and effectiveness
of this new technique are illustrated by using numerical examples
of three-dimensional cavity resonators.

Index Terms—Finite-element method, Maxwell’s equations,
spectral Lanczos decomposition method.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) technique, first
introduced by Yee [1], has been the most popular method

for the simulation of transient electromagnetic-wave phenom-
ena for the past few decades. Despite its programming simplic-
ity, ease in bookkeeping, and the simplicity of its numerical
integration algorithm, it has suffered from the staircasing
approximation in its original form when modeling curved
surfaces [2]. Recent efforts have focused on the development
of FDTD-based algorithms for irregular grids that conform to
the surfaces of all boundaries in the problem domain [3]–[14].
Additionally, the FDTD is an explicit scheme, which is only
conditionally stable.

To circumvent the aforementioned difficulties, the time-
domain finite-element method (TD-FEM) has been proposed
over the past ten years. A point-matched TD-FEM using
conformal meshes was first introduced by Cangellariset al.
[15], [16] and was then extended to treat lossy media by Lin
and Mei [17]. The major drawback of this technique is that
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all three components for each of the fields are placed at the
same node, thus requiring special treatment for updating the
nodes residing on surfaces where the electromagnetic proper-
ties of the media change abruptly [18]. Other finite-element
time-domain (FETD) techniques which followed utilized an
approximate diagonalization of the mass matrix to reduce
the computational burden required for matrix solutions [19],
[20]. A time-domain integration of Maxwell’s equations on
finite elements was reported by Lynch and Paulsen [21],
which employed a generalized wave equation in weak form
and used an integral lumping to render the mass matrix
diagonal. This is an explicit scheme requiring no matrix
solution, and a frequency-domain nodal-based finite-element
code can be adapted to this time-domain technique [18]. It
has, however, an uncertain accuracy and, furthermore, special
treatment is necessary for material discontinuities since it is a
nodal-based technique, and it has the potential of producing
significant errors when perfectly conducting corners and edges
are present [18].

To annihilate the problems described above and to offer
more robust techniques, the use of edge elements was pre-
scribed for finite-element treatment of Maxwell’s equations
[22] and was extended to the time-domain analysis. Mur [23]
reported an edge-based FETD method where a second-order
differential equation in time is solved by using a central
difference formula. However, a contamination of the field
signature with spurious linear-in-time signals was observed
when the method was employed to analyze a resonating
cavity [24]. Consequently, Mahadevanet al. [24] introduced
an edge/face-based technique, which complemented the edge
basis functions with face basis functions. Several other variants
have been proposed and implemented, including the work
by Elson et al. [25], Lee [26], [27], Wonget al. [28], and
Feliziani and Maradei [29]. As a common technique, the
time derivatives were approximated by a difference scheme,
resulting in an explicit time-domain phenomenon. Therefore,
the methods described above are only conditionally stable
with time steps, which are typically equal to or smaller than
those imposed by the FDTD technique. Implicit time-domain
schemes, on the other hand, involve the solution of a matrix
equation for every time step, while allowing for the possibility
of implementing procedures that are unconditionally stable
[18]. Such methods have been developed by Gedney and
Navsariwala [30] for the solution of the vector-wave equation
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to analyze simple cavity resonators. Although the number of
time steps is small, no comparison of the central processing
unit (CPU) time is illustrated.

For an implicit method to be computationally as efficient
as an explicit method, either the number of time iterations
necessary for convergence must be very small [30] (since for
each time iteration a solution of a linear systems of equations
is required) or the system should be treated in a very efficient
manner.

Recently, Zunoubiet al. [31], [32] have employed a spectral
Lanczos decomposition method (SLDM) [33] for solving
axisymmetric and three-dimensional low-frequency electro-
magnetic diffusion by the FEM. It has been demonstrated [31],
[32] that the SLDM is very fast and is capable of obtaining
solutions at many frequencies in a negligible amount of extra
computing time.

In this paper, an edge-based FEM is employed to discretize
Maxwell’s equations in both time and frequency domains.
The techniques are referred to as the FETD and the finite-
element frequency-domain (FEFD), respectively. A matrix
equation is obtained and the lumping procedure is applied
to the mass matrix. The SLDM is then employed to solve
for the electromagnetic fields for multiple times and frequen-
cies implicitly. The efficiency and validity of this technique
are tested by studying the resonant frequencies of various
microwave cavities. Slight inaccuracy introduced in the time-
domain signals by the mass-lumping approximation is also
demonstrated.

II. FINITE-ELEMENT FORMULATION

When electromagnetic problems are analyzed by the
FEM, Maxwell’s equations can be discretized by edge-based
elements. In this section, such a discretization method is
discussed. It is well known that Maxwell’s equations in
space–time are

(1)

In a lossless medium, if (1) is solved for the electric-field
intensity, we can write

(2)

with the boundary conditions

on electric walls

on magnetic walls (3)

The solution of (2) and (3) is obtained by seeking the stationary
point of the functional given by [34]

(4)

where denotes the volume of interest. This functional can
be discretized by first subdividing the volume into small
elements and expanding the electric field as

(5)

where denotes the expansion function associated with edge
, denotes the associated tangential electric field, and

denotes the total number of edges in. Substituting (5) into
(4) and applying the Rayleigh–Ritz procedure, we obtain the
matrix equation

(6)

where and

(7)

The and in (6) are thestiffnessand mass matri-
ces, respectively. This matrix equation can be solved after
mass lumping by the SLDM, which is discussed in detail in
Section III.

III. SLDM

In order to solve (6) for the electric field by the SLDM [33],
this equation must first be cast into a form

(8)

with being the identity matrix. Therefore, the matrix of
(6) is first converted into a diagonal matrix by the row–sum
lumping procedure to yield

(9)

In the row–sum lumping procedure, the diagonal entries of
matrix are determined as the sum of all the elements in the
corresponding rows of matrix . For the sake of convenience,
we omit the brackets for the notation of matrices and vectors
in this section. Equation (9) can be further written as

(10)

or

(11)

with and , assuming that no zero
or negative elements are present on the diagonal of matrix.
If we define

(12)

where denotes a unit step function, following the Laplace
transform of (11), we can write

(13)
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In the above, and is determined to be
so that

(14)

Applying the inverse Laplace transform yields

(15)

It is evident that the electric-field intensity can be analyt-
ically determined in both frequency and time domains from
(14) and (15), respectively. Note that the time dependence
in (12) is not the only choice; other time functions can be
chosen as well. For example, if a modulated exponential decay
function such as

(16)

is chosen, then we can write

(17)

and

(18)

The unknown vector in the above equations is approx-
imated in the SLDM by replacing the matrix with its

eigenvalues and corresponding eigenvectors. Addi-
tionally, the eigenpairs are not calculated directly from the
symmetric matrix , but from a symmetric tridiagonal matrix,
which is generated from via an orthogonal transformation
or, more specifically, the Lanczos process. The tridiagonal
matrix is the Ritz approximation of and is related to

as

(19)

where is an orthogonal matrix. The
bases are generated by the Gram–Schmidt
orthogonalization process of vectors in
the Krylov subspace

(20)

Next, we define the elements of the Ritz matrixas

(21)

so that (19) can be expressed as

(22)

where . The orthonormality of implies that

(23)

If we define

(24)

we can then express as

(25)

where . Equations (21)–(25) define the Lanczos
process which is used to construct the tridiagonal matrix
and the orthogonal matrix . If we further define and
to be the eigenvalues and their corresponding eigenvectors of
matrix , respectively, then we can write

(26)

and choose a vector as

(27)

where is the first unit vector.
The unknowns and in (14) and (15) can then
be approximated by

(28)

and

(29)

respectively. These are valid approximations of the unknown
vectors and since the spectrum of is contained
in the spectral segment of matrix . The corresponding
expressions for (17) and (18) can be similarly obtained.

The main arithmetic work in the SLDM is to obtain matrices
and . However, the dimension of the Krylov subspace

necessary to reach convergence is typically much smaller than
the dimension of matrix [33]. For efficient computations
of the eigenvalues and eigenvectors of matrix, the PWK
[35] and inverse-iteration algorithms are implemented. With
the above algorithms used to compute the eigenpairs of matrix

, only operations are required. Additionally, it is
not necessary to recompute and matrices for multiple
frequencies or time steps. Only the matrix functionals
of (28) and (29) need to be computed for various frequencies
and time steps. This proves to be the most attractive feature
of the SLDM. This fact is further verified in Section IV.

IV. RESULTS

To verify the formulation presented in this paper, the
resonant frequencies of various microwave cavities are studied.
First, a rectangular air-filled cavity, for which the resonant
frequencies are known analytically, is studied. Second, an
inhomogeneous cavity is simulated and the results are com-
pared with the corresponding results reported in [36]. The
electric-field intensity is determined in both frequency and
time domains. Very accurate results are obtained in minimal
computational time. All the computations are performed on a
DEC Alpha Workstation computer with an average throughput
of 44 MFlops and the tolerance (the relative difference be-
tween two consecutive iterations) used to terminate the SLDM
iterations is 10 .

A. Rectangular Cavity

A rectangular cavity with unequal side lengths is first
considered. The problem geometry is illustrated in Fig. 1. The
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TABLE I
RESONANT FREQUENCIES OF A5 m � 4 m � 3 m CAVITY RESONATOR USING FREQUENCY-DOMAIN ANALYSIS

Fig. 1. The problem geometry for the electric field computation of an
air-filled resonant cavity.

cavity dimensions are 5 m 4 m 3 m, which are subdivided
into 20, 16, and 12 segments, respectively. The total number
of unknowns is, therefore, 10 064. The cavity is illuminated by
a short pulse of duration ns positioned near a
corner in order to excite as many resonant modes as possible.

First, the magnitude of the electric field is computed from
(28) at the largest frequency of interest—100 MHz—while the
same and matrices are used to calculate the field in a
frequency range of 40–100 MHz with a frequency increment
of 0.1 MHz. The frequency spectrum of the field is given in
Fig. 2. The total CPU time required to obtain results of Fig. 2
is only 65.6 s, of which 56.6 s are spent on the first frequency
point and only 9.0 s are spent on the remaining 599 frequency
points. Similar results were obtained using the Whitney-
element time-domain (WETD) method [27] with a CPU time
of approximately 13 418 s on an HP-735 Workstation. A
comparison of the computed resonant frequencies with the
analytical values is given in Table I. As can be seen from
this table, the numerical results are very accurate.

Next, the electric-field intensity is calculated by the SLDM
from (29) at the largest time of interest, 0.24s and a multiple-
time analysis is performed for to 0.24 s with a time
step of ns using the same and matrices
obtained at s. The field is sampled at a few locations
inside the cavity and the Fourier transform of the time-domain
response is performed, which clearly indicates the resonance

Fig. 2. Typical frequency spectrum of a 5 m� 4 m� 3 m resonant cavity.

TABLE II
RESONANT FREQUENCIES OF A5 m � 4 m ��3 m
CAVITY RESONATOR USING TIME-DOMAIN ANALYSIS

peaks, from which the resonant frequencies can be determined.
The numerical and analytical resonant frequencies are listed
in Table II. Again, excellent agreement is observed. The total
CPU time is 131.5 s, of which 122 s are spent on the first
time point, and 9.5 s are spent on the remaining 499 time
points. The longer CPU time is due to the calculation of the
sine functions and square root in (29).

To examine the accuracy of the waveform calculation using
(29), the electric field computed at the center of the cavity for
the first 300 time steps is compared with the corresponding
results obtained from the conventional finite-difference time-
domain (FDTD) method. Note that the same time step as for
the FEM analysis is chosen for the FDTD computations. To
also enforce the constrain of 20 cells per wavelength imposed
in the FDTD technique, we pass the short pulse through a
finite impulse response (FIR) low-pass filter [37] with a cutoff
frequency of 60.0 MHz. This will eliminate the possibility of
contaminating the time-domain signal by the high-frequency
components of the field.

Results are depicted in Fig. 3. As can be seen from this
figure, the general agreement is very good and there is only a
slight disagreement between the two solutions. To identify the
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Fig. 3. A comparison of the FESLDM and FDTD response of the air-filled
cavity excited by a filtered short pulse.

Fig. 4. A comparison of the FDSLDM and FDTD response of the air-filled
cavity excited by a filtered short pulse.

possible source of this small error, we note that (29) contains
and . The accuracy of the calculation of these

two terms depends not only on the relative accuracy of, but
also on the absolute value of. A very small relative error in

can cause a significant error in the calculation of
and when and are large. Therefore, in order to
calculate using (29) accurately, one must calculate
very accurately. However, the accuracy of is limited by
the numerical discretization, especially by the mass-lumping
procedure for large ’s.

To verify this point, we applied the finite-difference scheme
to (2), which results in an equation identical to (8) without a
need for mass lumping. The resulting equation is then solved
by the SLDM, as described in Section III. The electric field
computed at the cavity center is compared with the FDTD
results and the comparison is given in Fig. 4. As can be seen
from this figure, an excellent agreement is achieved because,
by avoiding the mass-lumping procedure, the high eigenvalues
( ) are computed more accurately.

Fig. 5. A comparison of the FESLDM and FDTD response of the air-filled
cavity excited by a tapered sine function.

Fig. 6. A comparison of the FDSLDM and FDTD response of the air-filled
cavity excited by a tapered sine function.

As another example, a tapered sine function

(30)

is used as the excitation, where and
. Note that here, the 20 cells per wavelength constraint

has been already enforced. The-component of the electric
field is computed by both FESLDM and FDSLDM and the
results are compared with the corresponding FDTD results.
Comparisons are given in Figs. 5 and 6, respectively. A good
agreement is obtained for the FESLDM results. When a low-
pass FIR filter with a cutoff frequency of 120.0 MHz is
used to remove the high-frequency components that are not
modeled accurately with the numerical discretization, results
are excellent, as can be seen in Figs. 7 and 8.

To justify the multiple time and frequency analysis, the
SLDM is employed to compute the field at each single
frequency and time in the frequency range of 40–100 MHz
and time range of 0–0.24s, and the number of the SLDM it-
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Fig. 7. A comparison of the FESLDM and FDTD response of the air-filled
cavity excited by a tapered sine function with a low-pass filter.

Fig. 8. A comparison of the FDSLDM and FDTD response of the air-filled
cavity illuminated by a tapered sine function with a low-pass filter.

erations is plotted in Fig. 9. It is seen that as the frequency and
time increase, the number of iterations increases accordingly,
thus validating the multiple time and frequency procedures.

B. Partially Loaded Dielectric Cavity

A rectangular cavity loaded with a dielectric material is
also considered. For the sake of comparison, the same cavity
as analyzed in [36] is studied. The problem configuration is
illustrated in Fig. 10. The perfect magnetic conductor (PMC)
walls are used to reduce the size of the problem domain. The
total number of unknowns is 5440. The same source as in the
previous section is used to excite the cavity modes. The mag-
nitude of the electric field is computed in a frequency range
of 200–500 MHz with a frequency increment of 0.5 MHz
while performing the SLDM iterations only at 500 MHz. The
total CPU time is 27 s and the result is given in Fig. 11. A
comparison of the resonant frequencies with the corresponding

(a)

(b)

Fig. 9. Number of SLDM iterations versus: (a) frequency and (b) time.

results reported in [36] is given in Table III. An excellent
agreement is observed.

A multiple time-domain analysis of the cavity is performed
next. The time step here is chosen to be 0.030 25 ns with the
largest time ns. Again, (29) is used to calculate the
field intensity at the center of the cavity. The total CPU time
for this case is 235 s. The resonant frequencies obtained from
the fast Fourier transform (FFT) of the time domain results are
listed in Table IV, and are compared with the corresponding
results reported in [36]. A very good agreement is achieved.

The efficiency of the method is further demonstrated by
analyzing the cavity, illustrated in Fig. 10, without using the
symmetric property of the geometry. The cavity is subdivided
into 16, 40, and 12 segments in the-, -, and -directions, re-
spectively, resulting in 20 484 unknowns. A frequency-domain
analysis is performed using the SLDM and the results are
plotted in Fig. 12. Four resonant frequencies are identical to
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Fig. 10. The problem geometry for the electric field computation of a
dielectric loaded microwave cavity withx = 0:5 m, y = 0:2 m, z = 0:3 m,
a = 0:125 m, b = 0:075 m, andc = 0:175 m.

Fig. 11. Typical frequency spectrum of the dielectric-loaded resonant cavity.

TABLE III
RESONANT FREQUENCIES OF APARTIALLY LOADED

CAVITY USING FREQUENCY-DOMAIN ANALYSIS

the corresponding frequencies obtained when using symmetry.
Additionally, the antisymmetric resonant frequencies are also
clearly observed in Fig. 12. The total CPU time for this
computation is 373 s, of which about 313 s are spent on the

TABLE IV
RESONANT FREQUENCIES OF APARTIALLY LOADED

CAVITY USING TIME-DOMAIN ANALYSIS

Fig. 12. Typical frequency spectrum of the dielectric-loaded resonant cavity
without using symmetry. The resonant frequencies identified from this figure
are 255.1, 359.0, 367.1, 376.0, 410.0, 439.5, 441.0, 462.5, 467.0, 471.0, and
493.0 MHz. Those at 255.1, 367.1, 462.5, and 493.0 MHz have been observed
in Fig. 13.

first frequency point and only 60 s are spent on the remaining
599 frequency points.

V. CONCLUSION

A new efficient time-domain and frequency-domain finite-
element solution is proposed. In this technique, the SLDM is
applied to the solution of the three-dimensional Maxwell’s
equations in both frequency and time domains, discretized
using the FEM with edge-based elements. The formulation pre-
sented in this paper is validated by studying various microwave
cavities. Very accurate results are obtained in minimal com-
putational time, illustrating the effectiveness and efficiency
of this technique. It is shown that the SLDM is not only
computationally fast, but also capable of obtaining solutions
at many frequencies and time steps by performing the SLDM
iterations only for the largest frequency or time of interest. The
problems associated with the mass-lumping procedure for the
wave equation is addressed here. It is demonstrated that some
inaccuracy is introduced by the mass-lumping technique, al-
though it is not of much significance. Finally, we note that the
method can also be extended to deal with lossy problems [38].
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