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_ Abstract—An efficient three-dimensional solver for the solu- all three components for each of the fields are placed at the
tion of the electromagnetic fields in both time and frequency same node, thus requiring special treatment for updating the
domains is described. The proposed method employs the edge-,,q4as residing on surfaces where the electromagnetic proper-

based finite-element method (FEM) to discretize Maxwell’'s equa- .. - e
tions. The resultant matrix equation after applying the mass- ties of the media change abruptly [18]. Other finite-element

lumping procedure is solved by the spectral Lanczos decompo- time-domain (FETD) techniques which followed utilized an
sition method (SLDM), which is based on the Krylov subspace approximate diagonalization of the mass matrix to reduce
(Lanczos) approximation of the solution. This technique is, there- the computational burden required for matrix solutions [19],
fore, an implicit unconditionally stable finite-element time and [20]. A time-domain integration of Maxwell’s equations on

frequency-domain scheme, which requires the implementation of . .
the Lanczos process only at the largest time or frequency of fINIté elements was reported by Lynch and Paulsen [21],

interest. Consequently, a multiple time- and frequency-domain Which employed a generalized wave equation in weak form
analysis of the electromagnetic fields is achieved in a negligibleand used an integral lumping to render the mass matrix
amount of extra computing time. The efficiency and effectiveness diagonal. This is an explicit scheme requiring no matrix
of this new technique are illustrated by using numerical examples g4 tion, and a frequency-domain nodal-based finite-element
of three-dimensional cavity resonators. N . .
code can be adapted to this time-domain technique [18]. It
Index Terms—Finite-element method, Maxwell's equations, has, however, an uncertain accuracy and, furthermore, special
spectral Lanczos decomposition method. treatment is necessary for material discontinuities since it is a
nodal-based technique, and it has the potential of producing
|. INTRODUCTION significant errors when perfectly conducting corners and edges

HE finite-difference time-domain (FDTD) technique, firsf'< prese.nt' [18] :
. To annihilate the problems described above and to offer
introduced by Yee [1], has been the most popular method .

. . ; . more robust techniques, the use of edge elements was pre-
for the simulation of transient electromagnetic-wave phenom-

. . ; cribed for finite-element treatment of Maxwell's equations
ena for the past few decades. Despite its programming simpliG- . ) .
) . i o . "1¢42] and was extended to the time-domain analysis. Mur [23]
ity, ease in bookkeeping, and the simplicity of its numeric

integration algorithm, it has suffered from the staircasinremrte(j an edge-based FETD method where a second-order

c o IR - . ifferential equation in time is solved by using a central
approximation in its original form when modeling curved,. ™ '
difference formula. However, a contamination of the field
surfaces [2]. Recent efforts have focused on the developmen

of FDTD-based algorithms for irregular grids that conform t8|gnature with spurious linear-in-time signals was observed

o . hen the method was employed to analyze a resonating
the ?‘.”faces of all bouncjanes n the_ problem domgm [3] [1 avity [24]. Consequently, Mahadevat al. [24] introduced
Additionally, the FDTD is an explicit scheme, which is only . .

I an edge/face-based technique, which complemented the edge
conditionally stable.

basis functions with face basis functions. Several other variants

To circumvent the aforementioned difficulties, the time: : . .
domain finite-element method (TD-FEM) has been propos gve been proposed and implemented, including the work
brop % Elsonet al. [25], Lee [26], [27], Wonget al. [28], and

over the past ten years. A point-matched TD-FEM us"E}e/zliziani and Maradei [29]. As a common technique, the

conformal meshes was first introduced by Cangellatisl. .. L : .
. time derivatives were approximated by a difference scheme,
[15], [16] and was then extended to treat lossy media by Lin =~ =~ " o .
sulting in an explicit time-domain phenomenon. Therefore,

A . . . . ¢
and Mei [17]. The major drawback of this technique is tha{ﬁe methods described above are only conditionally stable
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to analyze simple cavity resonators. Although the number where V' denotes the volume of interest. This functional can
time steps is small, no comparison of the central processing discretized by first subdividing the volumeé into small

unit (CPU) time is illustrated. elements and expanding the electric field as
For an implicit method to be computationally as efficient
as an explicit method, either the number of time iterations E(z, y, ) Z Ni(z, v, 2) (5)

necessary for convergence must be very small [30] (since for

each time iteration a solution of a linear systems of equauon%ereN denotes the expansion function associated with edge

is required) or the system should be treated in a very eff|C|en P 9

manner. , E; denotes the associated tangential electric field, &nd
denotes the total nhumber of edgeslin Substituting (5) into

Recently, Zunoubét al.[31], [32] have employed a spectral X . ) .
Lanczos decomposition method (SLDM) [33] for solvini;) and applying the Rayleigh—Ritz procedure, we obtain the

axisymmetric and three-dimensional low-frequency electr natrix-equation

magnetic diffusion by the FEM. It has been demonstrated [31], d?

[32] that the SLDM is very fast and is capable of obtaining [+ 2= dt? [} = dt {b} (6)
solutions at many frequencies in a negligible amount of extra T
computing time. where{E} = [E1, B, -+, Ex]" and

In this paper, an edge-based FEM is employed to discretize _ /// (V x Nb) - (V x N,)dV
Maxwell's equations in both time and frequency domains. Ci.i v

The techniques are referred to as the FETD and the finite- T = // (N, - N)dV

element frequency-domain (FEFD), respectively. A matrix S P

equation is obtained and the lumping procedure is applied o

to the mass matrix. The SLDM is then employed to solve by =~ /// 7)

for the electromagnetic fields for multiple times and frequeq.he

cies implicitly. The efficiency and validity of this technique [€] and [7] in (6) are thestiffinessand mass matri-

ces, respectively. This matrix equation can be solved after

are tested by studying the resonant frequencies of Va”%so\ss lumping by the SLDM, which is discussed in detail in
microwave cavities. Slight inaccuracy introduced in the tim saction IIl.

domain signals by the mass-lumping approximation is also

demonstrated. Ill. SLDM

In order to solve (6) for the electric field by the SLDM [33],

this equation must first be cast into a form
When electromagnetic problems are analyzed by the < g2 ) d

FEM, Maxwell's equations can be discretized by edge-based A+ @I =
elements. In this section, such a discretization method is

discussed. It is well known that Maxwell's equations ifVith I being the identity matrix. Therefore, the matix of
space—timeR* are (6) is first converted into a diagonal matrix by the row—sum

lumping procedure to yield

Il. FINITE-ELEMENT FORMULATION

U (8)

JH 2

VXE=—por <o+d—2D>E—ib )
SE dt dt

VxH=J +e§ +oE. (1) In the row—sum lumping procedure, the diagonal entries of

_ _ _ ~ matrix D are determined as the sum of all the elements in the
In a lossless medium, if (1) is solved for the electric-fieldorresponding rows of matrix. For the sake of convenience,

intensity, we can write we omit the brackets for the notation of matrices and vectors
9 in this section. Equation (9) can be further written as
Ux (1vxE +8E oJ 2) 2
- o 27
1 at> ot D YV2cp—1/? 4+ & I|E = D—l/2£ b (10)
de? dt
with the boundary conditions or
2
7 x E =0 on electric walls <A’ + % I) E = (jt v (11)
7 x V x E =0 on magnetic walls 3)

. _ _ _ ~ with B/ = DY?E and¥’ = D~'/2, assuming that no zero
The solution of (2) and (3) is obtained by seeking the stationagy negative elements are present on the diagonal of makrix
point of the functional given by [34] If we define

_ %//A B(V Y E)-(vxB)+ B2 E} . Ve, t) = V'(0)[u(t) — ut — T)] (12)

8 where« denotes a unit step function, following the Laplace

// N mav () transform of (11), we can V\{nte
v [s°] + A’ E'(s) — E'(0) = =V (r)e™ ™. (13)
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In the above,E’(0) = 0 and E'(0) is determined to b&'(r) we can then expresg,; as

so that T
1—¢eTs qi+1 = /7 (25)
E'(s) =V(r)| =—|. (14) . ’ .
s2T+ A where 3; = ||»;||2. Equations (21)—(25) define the Lanczos
Applying the inverse Laplace transform yields process which is used to construct the tridiagonal makfix
¥ (r) and the orthogonal matrig). If we further defineA and V'
E'(t) = N [sin VAt — sin VA (t — T)}. (15) to be the eigenvalues and their corresponding eigenvectors of
A matrix H, respectively, then we can write

It is evident that the electric-field intensiflg can be analyt- T ]
ically determined in both frequency and time domains from & = VAV, A =diaglhr, Az, -+, Awl (26)
(14) and (15), respectively. Note that the time dependen@ed choose a vectay; as

in (12) is not the only choice; other time functions can be b

chosen as well. For example, if a modulated exponential decay @ = Qe = W 27)
function such as wheree; = (1,0,0, ---, 0)7 is the first unit M vector.
V(r, t) = b (r)[e™ sin(bt)u(t)] (16) The unknownsE’(s) and E'(t) in (14) and (15) can then
. . be approximated by
is chosen, then we can write | s
bs E'(s) = ||b’||QV[—_ c }VTG (28)
/ Y 2 1

E'(s)=b (r){ (A" 1 D[ + (a+ 9)7] } (47) s I+ A

and and " "
! —at sin VAt —sinvVA(#t—T

B(t) = ¥(r)e E'(1) = W ]lQv C=Dlyre, ()

(a2 + b2)2 + (2% — 262 + AN A’ VA

. [_ (a® + ab® 4 aA’) sin(bt) respectively. These are valid approximations of the unknown

vectorsE’(s) and E’(t) since the spectrum df is contained
— (@®b+b® —bA) cos(bt) + e*(a®b +° —bA') in the spectral segment of matrix’. The corresponding
-cos(VA't) 4 2abV/ A’ sin(\/ft)] (18) expressions for (17) and (18) can be similarly obtained.
The main arithmetic work in the SLDM is to obtain matrices
The unknown vectol”’ in the above equations is approx-g and H. However, the dimension of the Krylov subspade
imated in the SLDM by replacing the matrid’ with its npecessary to reach convergence is typically much smaller than
M(<N) eigenvalues and corresponding eigenvectors. Addhe dimension of matrix4’ [33]. For efficient computations
tionally, the eigenpairs are not calculated directly from thef the eigenvalues and eigenvectors of matiix the PWK
symmetric matrix4’, but from a symmetric tridiagonal matrix, [35] and inverse-iteration algorithms are implemented. With
which is generated fromi’ via an orthogonal transformationthe above algorithms used to compute the eigenpairs of matrix
or, more specifically, the Lanczos process. The tridiagondl only O(M?) operations are required. Additionally, it is

matrix H is the Ritz approximation ofd’ and is related to Not necessary to recompuég and H matrices for multiple
A’ as frequencies or time steps. Only the matrix functionfA{$7)

of (28) and (29) need to be computed for various frequencies

QTAQ=H (19)  and time steps. This proves to be the most attractive feature
where Q@ = [q1, ¢2, -+, qu] IS an orthogonal matrix. The of the SLDM. This fact is further verified in Section IV.
basesq, Q2,5 qm are generated by the Gra}\T_—Schmidt V. RESULTS
orthogonalization process of vectdrs Ay, ---, A’M=1 in _ ) ) )
the Krylov subspace To verify the formulation presented in this paper, the
, , v resonant frequencies of various microwave cavities are studied.
k(A q, M) = span{qy, A'q, -+, A a1}.  (20) First, a rectangular air-filed cavity, for which the resonant
Next, we define the elements of the Ritz matfixas frequencies are known analytically, is studied. Second, an
) inhomogeneous cavity is simulated and the results are com-
Hi i = e, i=1,2--, M, pared with the corresponding results reported in [36]. The
H,, 1=H,_1,=70, 1=1,2,---, M —1 (21) electric-field intensity is determined in both frequency and

time domains. Very accurate results are obtained in minimal
computational time. All the computations are performed on a
Ag =8 1¢; 1+ + Bigiat, 1=1,2,---, M DEC Alpha Workstation computer with an average throughput
(22) of 44 MFlops and the tolerance (the relative difference be-

) o tween two consecutive iterations) used to terminate the SLDM
where3yq0 = 0. The orthonormality ofy; implies that iterations is 16°%.

;= qiTA’qi. (23)

so that (19) can be expressed as

A. Rectangular Cavity

If we define A rectangular cavity with unequal side lengths is first

ri = (A" —o;)q; — Bi—1gi—1 # 0 (24) considered. The problem geometry is illustrated in Fig. 1. The



1144

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 8, AUGUST 1998

TABLE |
RESONANT FREQUENCIES OF AB M x 4 m x 3 m CaviTy RESONATOR USING FREQUENCY-DOMAIN ANALYSIS
Mode 011 y 101 | 110 | 111 | 012 } 102 | 021 | 112 | 120 | 121 | 022 | 013
Exact (MHz) | 48.0 | 58.3 | 62.5 | 69.3 | 70.8 | 78.1 [ 80.7 | 86.6 | 90.1 | 95.0 | 96.0 | 97.5
FEFD (MHz) | 47.9 | 58.1 | 62.3 | 69.1 | 70.4 | 77.6 | 80.3 | 86.2 | 89.4 | 94.2 | 95.0 | 96.6
% Error 0.21 10341032 ]0.29|0.56 | 0.64 | 0.49 | 0.58 [ 0.84 | 0.78 | 1.04 | 0.92
N 0.03 121
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, / Fig. 2. Typical frequency spectrum of a 54 m x 3 m resonant cavity.
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x

Fig. 1. The problem geometry for the electric field computation of an

TABLE 1
RESONANT FREQUENCIES OF A5 M X 4 m xx3 m
CaviTy RESONATOR USING TIME-DOMAIN ANALYSIS

air-filled resonant Ca\/ity_ Mode 011 102 | 112 120 | 121 013 | 121

Exact (MHz) | 48.0 | 58.3 | 69.3 | 78.1 | 86.6 | 90.1 | 95.0

o . : o FETD (MHz) | 48.7 | 57.1 | 69.0 [ 77.2 | 85.3 ] 89.37 93.4
cavity dimensions are 5 m 4 m x 3 m, which are subdivided (MHz)

% Error 1.46 | 2.06 | 0.43 | 1.15 | 1.50 | 0.89 | 1.68

into 20, 16, and 12 segments, respectively. The total number
of unknowns is, therefore, 10 064. The cavity is illuminated by

C . "
a short' pulse of dura‘qoﬁ’ = 1.443375 ns positioned near a aks, from which the resonant frequencies can be determined.
corner in order to excite as many resonant modes as possi

First, the magnitude of the electric field is computed from € numerical gnd analytical resonant.frequencies are listed
(28) at,the largest frequency of interest—100 MHz—while D Table II. Again, excellent agreement is observed. The total

same(@ and H matrices are used to calculate the field in PU time is 131.5 s, of which 122 s are spent on the first

frequency range of 40-100 MHz with a frequency incremeﬁ{n_e point, and 9.5 s are sp(_ent on the remaining 499 time
of 0.1 MHz. The frequency spectrum of the field is given iI;?omts. The longer CPU time is due to the calculation of the

Fig. 2. The total CPU time required to obtain results of Fig. §ine functiqns and square root in (29). i _
is only 65.6 s, of which 56.6 s are spent on the first frequenc To examine the accuracy of the waveform calculation using

point and only 9.0 s are spent on the remaining 599 freque ),.the eIectric field computed at the genter of the cavity fpr
points. Similar results were obtained using the Whitneyli€ first 300 time steps is compared with the corresponding
element time-domain (WETD) method [27] with a CPU tim&€sults obtained from the conventional finite-difference time-
of approximately 13418 s on an HP-735 Workstation. Aomain (FDTD) method. Note that the same time step as for
comparison of the computed resonant frequencies with tH FEM analysis is chosen for the FDTD computations. To
analytical values is given in Table I. As can be seen frofSO enforce the constrain of 20 cells per wavelength imposed
this table, the numerical results are very accurate. in the FDTD technique, we pass the short pulse through a
Next, the electric-field intensity is calculated by the SLDMinite impulse response (FIR) low-pass filter [37] with a cutoff
from (29) at the largest time of interest, 0,24 and a multiple- frequency of 60.0 MHz. This will eliminate the possibility of
time analysis is performed far= 0.0 to 0.24 s with a time contaminating the time-domain signal by the high-frequency
step of At = 0.481 125 ns using the sam€& and H matrices components of the field.
obtained at = 0.24 us. The field is sampled at a few locations Results are depicted in Fig. 3. As can be seen from this
inside the cavity and the Fourier transform of the time-domafigure, the general agreement is very good and there is only a
response is performed, which clearly indicates the resonarstight disagreement between the two solutions. To identify the
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Fig. 3. A comparison of the FESLDM and FDTD response of the air-filleffig. 5. A comparison of the FESLDM and FDTD response of the air-filled

cavity excited by a filtered short pulse.
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excited by a tapered sine function.
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Fig. 4. A comparison of the FDSLDM and FDTD response of the air-filleffid- 6. A comparison of the FDSLDM and FDTD response of the air-filled
cavity excited by a filtered short pulse. cavity excited by a tapered sine function.

possible source of this small error, we note that (29) containsAS another example, a tapered sine function
sin v/At andcos v/At. The accuracy of the calculation of these
two terms depends not only on the relative accuracydbut
also on the absolute value af A very small relative error in
A can cause a significant error in the calculatiorsiofv/At is used as the excitation, whete = 0.261187 x 10° and
and cos VAt when A and¢ are large. Therefore, in order toh = a/5. Note that here, the 20 cells per wavelength constraint
calculate £/(t) using (29) accurately, one must calculate has been already enforced. Thecomponent of the electric
very accurately. However, the accuracy Afis limited by field is computed by both FESLDM and FDSLDM and the
the numerical discretization, especially by the mass-lumpimgsults are compared with the corresponding FDTD results.
procedure for large\’s. Comparisons are given in Figs. 5 and 6, respectively. A good
To verify this point, we applied the finite-difference schemagreement is obtained for the FESLDM results. When a low-
to (2), which results in an equation identical to (8) without pass FIR filter with a cutoff frequency of 120.0 MHz is
need for mass lumping. The resulting equation is then solvaded to remove the high-frequency components that are not
by the SLDM, as described in Section Ill. The electric fielinodeled accurately with the numerical discretization, results
computed at the cavity center is compared with the FDTare excellent, as can be seen in Figs. 7 and 8.
results and the comparison is given in Fig. 4. As can be seerTo justify the multiple time and frequency analysis, the
from this figure, an excellent agreement is achieved becauSeDM is employed to compute the field at each single
by avoiding the mass-lumping procedure, the high eigenvaluesquency and time in the frequency range of 40-100 MHz
(A) are computed more accurately. and time range of 0-0.24s, and the number of the SLDM it-

W (r, ) = b(r)[(1 — ) sin(bt)u(t)] (30)
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Fig. 9. Number of SLDM iterations versus: (a) frequency and (b) time.

erations is plotted in Fig. 9. It is seen that as the frequency and
time increase, the number of iterations increases accordinglysults reported in [36] is given in Table Ill. An excellent
thus validating the multiple time and frequency proceduresagreement is observed.
A multiple time-domain analysis of the cavity is performed
) ] ) ) next. The time step here is chosen to be 0.030 25 ns with the
B. Partially Loaded Dielectric Cavity largest timet = 30.25 ns. Again, (29) is used to calculate the
A rectangular cavity loaded with a dielectric material i$ield intensity at the center of the cavity. The total CPU time
also considered. For the sake of comparison, the same cafitythis case is 235 s. The resonant frequencies obtained from
as analyzed in [36] is studied. The problem configuration fhe fast Fourier transform (FFT) of the time domain results are
illustrated in Fig. 10. The perfect magnetic conductor (PMGisted in Table IV, and are compared with the corresponding
walls are used to reduce the size of the problem domain. Tiessults reported in [36]. A very good agreement is achieved.
total number of unknowns is 5440. The same source as in thélhe efficiency of the method is further demonstrated by
previous section is used to excite the cavity modes. The mamalyzing the cavity, illustrated in Fig. 10, without using the
nitude of the electric field is computed in a frequency ranggmmetric property of the geometry. The cavity is subdivided
of 200-500 MHz with a frequency increment of 0.5 MHZnto 16, 40, and 12 segments in the -, andz-directions, re-
while performing the SLDM iterations only at 500 MHz. Thespectively, resulting in 20 484 unknowns. A frequency-domain
total CPU time is 27 s and the result is given in Fig. 11. Analysis is performed using the SLDM and the results are
comparison of the resonant frequencies with the correspondpigtted in Fig. 12. Four resonant frequencies are identical to
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Fig. 10. The problem geometry for the electric field computation of
dielectric loaded microwave cavity with = 0.5 m, y = 0.2 m, = = 0.3 m,

a=0.125m, b = 0.075 m, andec = 0.175 m.
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TABLE IV
RESONANT FREQUENCIES OF APARTIALLY LOADED
CaviTY UsING TIME-DOMAIN ANALYSIS

Mode 1 2 3
FETD (MHz) | 258.2 | 355.1 | 452.0
FEM (MHz) [36] | 257.9 | 373.4 | 475.8
% Difference | 0.11 | 4.9 5.0

x 10

25 i

Electric field magnitude (V/m)
u

0.5} J
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@
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Fig. 12. Typical frequency spectrum of the dielectric-loaded resonant cavity
without using symmetry. The resonant frequencies identified from this figure
are 255.1, 359.0, 367.1, 376.0, 410.0, 439.5, 441.0, 462.5, 467.0, 471.0, and
493.0 MHz. Those at 255.1, 367.1, 462.5, and 493.0 MHz have been observed
in Fig. 13.

first frequency point and only 60 s are spent on the remaining
599 frequency points.

V. CONCLUSION

A new efficient time-domain and frequency-domain finite-
element solution is proposed. In this technique, the SLDM is
applied to the solution of the three-dimensional Maxwell's
equations in both frequency and time domains, discretized
using the FEM with edge-based elements. The formulation pre-
sented in this paper is validated by studying various microwave
cavities. Very accurate results are obtained in minimal com-

Fig. 11. Typical frequency spectrum of the dielectric-loaded resonant caviutational time, illustrating the effectiveness and efficiency

TABLE 1l

RESONANT FREQUENCIES OF APARTIALLY LOADED
CaviTy UsING FREQUENCY-DOMAIN ANALYSIS

of this technique. It is shown that the SLDM is not only

computationally fast, but also capable of obtaining solutions
at many frequencies and time steps by performing the SLDM
iterations only for the largest frequency or time of interest. The

Mode 1 2 3 problems associated with the mass-lumping procedure for the
FEFD (MHz) | 255.1 | 367.1 | 462.5 wave equation is addressed here. It is demonstrated that some
FEM (MHz) [36] | 257.9 | 373.4 | 4758 inaccuracy is introduced by the mass-lumping technique, al-
% Difference 1.1 | 17 | 28 though it is not of much significance. Finally, we note that the
method can also be extended to deal with lossy problems [38].
the corresponding frequencies obtained when using symmetry. REFERENCES

Additionally, the antisymmetric resonant frequencies are als
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Pl] K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell's equations in isotropic medialEEE Trans. Antennas

computation is 373 s, of which about 313 s are spent on the Propagat.,vol. AP-14, pp. 302-307, May 1966.



1148

IEEE TRANSACTIONS ON

MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 8, AUGUST 1998

[2] A. C. Cangellaris and D. B. Wright, “Analysis of the numerical error pp. 519-527, Nov. 1995.
caused by the stair-stepped approximation of a conducting boundd®8] M. F. Wong, O. Picon, and V. F. Hanna, “A finite-element method based
in FDTD simulations of electromagnetic phenomentfEE Trans. on Whitney forms to solve Maxwell equations in the time-domain,”
Antennas Propagatyol. 39, pp. 1518-1525, 1993. IEEE Trans. Magn.yol. 31, pp. 1618-1621, May 1995.

[3] D. Sheen, “Numerical modeling of microstrip circuits and antennas[29] M. Feliziani and F. Marradei, “Hybrid finite-element solutions of time
Ph.D. dissertation, MIT, Cambridge, June 1991. dependent Maxwell’s curl equationdEEE Trans. Magn.yol. 31, pp.

[4] T.A.Manteuffel and J. A. White, “The numerical solution of the second- 1330-1335, May 1995.
order boundary value problem on nonuniform meshdgth. Comput., [30] S. D. Gedney and U. Navsariwala, “An unconditionally stable finite-
vol. 47, pp. 511-535, 1986. element time-domain solution of the vector wave equatidEEE

[5] H. Kreiss, T. Manteuffel, B. Shwartz, B. Wendroff, and J. A. White, Microwave Guided Wave Letvpl. 5, pp. 332-334, Oct. 1995.
“Supraconvergent schemes on irregu|ar meshith. Comput.‘\/oL [31] M. Zunoubi, J. M. Jin, and W. C. Chew, “A spectral Lanczos decompo-
47, pp. 537-554, 1986. sition method for solving axisymmetric low-frequency electromagnetic

[6] T. G. Jurgens, A. Taflov, K. Umashankar, and T. G. Moore, “Finite- diffusion by the finite-element method,J. Electromagnetic Waves
difference time-domain modeling of curved surfacetfEE Trans. Applicat., vol. 11, pp. 1389-1406, 1997. _
Antennas Propagatyol. 40, pp. 357—366, Apr. 1992. [32] — » “The spectral Lanczos decomposition method for solving three-

[7] C.J. Railton, “An algorithm for the treatment of curved metallic laminas ~ dimensional low-frequency electromagnetic diffusion by the finite-
in the finite-difference time-domain methodEEE Trans. Microwave element method,” inProc. IEEE APS-URSI SympMontreal, P.Q.,
Theory Tech.yol. 41, pp. 1429-1438, Aug. 1993. Canada, July 1997, p. 39. )

[8] R. Holland, “Finite-difference solution of Maxwell's equations in gener{33] V. Druskin and L. Knizhnerman, “Spectral approach to solving three-
alized nonorthogonal coordinatesZEE Trans. Nucl. Sciyol. NS-30, dimensional Maxwell's diffusion equations in the time and frequency
pp. 4589-4591, Dec. 1983. domains,”Radio Sci.vol. 29, no. 4, pp. 937-953, Aug. 1994.

[9] K. K. Mei, A. Cangellaris, and D. J. Angelakos, “Conformal time-[34] J._Jln,The Finite Element Method in Electromagnetic®lew York:
domain finite-difference methodRadio Sci.,vol. 19, pp. 1145-1147, Wiley, 1993. o .
1984. [35] B. N. Parl_ett,The Symmetric Eigenvalue Problem&Englewood Cliffs,

[10] J. F. Lee, R. Palendech, and R. Mittra, “Modeling three—dimension?l NJ: Prentice-Hall, 1980. ) ) .
discontinuities in waveguides using nonorthogonal FDTD algorithm,36] I. Bardi, O. Biro, K. Prels_, G. Vrisk, and K. R. Richter, dial and
IEEE Trans. Microwave Theory Teclgl. 40, pp. 346-352, Feb. 1992. edge element analysis of inhomogeneously loaded 3-D cavitEgE

[11] T. Kashiva, T. Onishi, and I. Fukai, “Analysis of microstrip antenna? Trans. Magn.vol. 28, pp. 1142-1145, 1992. ]
on a curved surface using the conformal grids FDTD metht8EE  [37] :Zlusv'e‘:aigzznp'g'tal Filters and Signal Processing. Norwell, MA:
Trans. Antennas Propagatpl. 42, pp. 423-426, Mar. 1994. ! P . .

[12] M. Fusco, M. Smithp, gnd L. Go?gon, “A three-dimensional FDTD[38] M. _Zynoubl, J. M. .]|_n, and W: C. Chew, “Spectral L_anc_zps decom-
algorithm in curvilinear coordinates|EEE Trans. Antennas Propagat., position method for time-domain and frequency-domain finite-element
vol. 39, pp. 1463-1471, Oct. 1991. solution of Maxwell’s equations,Electron. Lett.,vol. 34, no. 4, pp.

[13] S. Gedney, F. Lansing, and D. Rascoe, “Full-wave analysis of mi- 346-347, 1998.
crowave monolithic circuit devices using a generalized Yee algorithm
based on an unstructured gridBEEE Trans. Microwave Theory Tech.,
vol. 44, pp. 1393-1400, Aug. 1996.

[14] S. Gedney and F. Lansing, “A parallel planar generalized Yee algorithm
for the analysis of microwave circuit devicestit. J. Numer. Modeling,
vol. 8, pp. 249-264, May 1995.

[15] A. C. Cangellaris, C. C. Lin, and K. K. Mei, “Point-matched time do-
main finite-element methods,” presented at the Nat. Radio Sci. Meeting,

Boston, MA, June 1984. Mohammad R. Zunoubi (S'91-M'96) received

[16] , “Point-matched time domain finite-element methods for ele the B.S. with honors and M.S. degrees in electri-
tromagnetic radiation and scatterind®EE Trans. Antennas Propagat., cal engineering from the University of Mississippi,
vol. AP-35, pp. 1160-1173, Oct. 1987. University, in 1989 and 1991, respectively, and

[17] C.C. Lin and K. K. Mei, “Time domain absorbing boundary conditio the Ph.D. degree in electrical engineering from
in lossy media,” presented at the Int. IEEE/Antennas Propagat. S Mississippi State University, Mississippi State, in
Symp., Boston, MA, June 1984. 1996.

[18] J. F. Lee, R. Lee, and A. C. Cangellaris, “Time-domain finite-elemei From 1989 to 1992, he was a Research Assis-
methods,”IEEE Trans. Antennas Propagatol. 45, pp. 430-442, Mar. tant in the Department of Electrical Engineering,
1997. F : University of Mississippi. From 1992 to 1996, he

[19] S. L. Ray, N. K. Madsen, and J. C. Nash, “Finite-element analysis - was a Research Assistant and Teaching Assistant in
electromagnetic aperture coupling problems,” presented at the Nottie Department of Electrical and Computer Engineering, Mississippi State
American Radio Sci. Meeting, June 1985. University. Since September 1996, he has been a Post-Doctoral Research

[20] J. B. Grant and N. K. Madsen, “GEM3D-A time domain threeFellow at the Center for Computational Electromagnetics, University of
dimensional, linear finite-element modeling,” presented at the Ndtlinois at Urbana-Champaign. His research interests include the areas of
Radio Sci. Meeting, Boulder, CO, Jan. 1986. computational electromagnetics, antennas, microwaves, and electromagnetic

[21] D. R. Lynch and K. D. Paulsen, “Time-domain integration of Maxwelcompatibility.
equations on finite-elementlEEE Trans. Antennas Propagatol. 38,
pp. 1933-1942, Dec. 1990.

[22] A. Bossavit and |. Mayergoys, “Edge elements for scattering problems,”

IEEE Trans. Magn.yol. 25, pp. 2816-2821, July 1989.

[23] G. Mur, “The finite-element modeling of three-dimensional time-domain
electromagnetic fields in strongly inhomogeneous medBEE Trans.
Magn., vol. 28, pp. 1130-1133, Mar. 1992.

[24] K. Mahadevan, R. Mittra, D. Rowse, and J. Murphy, “Edge-based finite-

_element frequency and time domain algorithms for RCS computation ” Kalyan C. Donepudi received the B.Tech. degree
in Proc. IEEE Antennas Propagat. Symp. Digal. 3, Ann Arbor, MI, in electrical engineering from the Nagarjuna Univer-
June 1993, pp. 1680-1683. o ) sity, Nagarjuna, India, in 1995, the M.S. degree from

[25] J. T. Elsor_1, H. Sang_anl, ar_1d C. H.‘Chan, “An explicit t_|me—doma|| the University of Illinois at Urbana-Champaign, in
me_thod using three-dimensional Whitney elementEEE Microwave 1998, and is currently working toward the Ph.D.
Guided W%ve Lett.vol._7', pp. 607-610, Sept. 1994. ' degree in electrical engineering.

[26] J. F. Le?, WETD: A,flnlte—elgment tlme—d_omaln approach for solving His research interests are in general areas of
li/llaxlvgell‘]sar?qligtgljns, 1EEE Microwave Guided Wave Letuol. 4, pp. computational electromagnetics.

[27] Z. S. Sacks and J. F. Lee, “A finite-element time-domain method usil

prism elements for microwave cavitiedFEE Trans. Magn.yol. 37,



ZUNOUBI et al. EFFICIENT TD AND FD FE SOLUTION OF MAXWELL'S EQUATIONS USING SLDM

Jian-Ming Jin (S'87-M’89-SM'94) received the
B.S. and M.S. degrees in applied physics from
Nanjing University, Nanjing, China, in 1982 and

1984, respectively, and the Ph.D. degree in electric:
engineering from the University of Michigan at Ann

Arbor, in 1989.

He joined the faculty of the Department of Elec-
trical and Computer Engineering, University of llli-
nois at Urbana-Champaign (UIUC), in 1993, after:
working as a Senior Scientist at Otsuka Electronic

Inc., Fort Collins, CO. He is currently an Associate' ‘

1149

Weng Cho Chew (S'79-M'80-SM’'86—F'93) was
born on June 9, 1953, in Malaysia. He received the
B.S. degree, both the M.S. and Engineer’s degrees,
and the Ph.D. degree from the Massachusetts Insti-
tute of Technology, Cambridge, in 1976, 1978, and
1980, respectively, all in electrical engineering.
From 1981 to 1985, he was with Schlumberger-
Doll Research, Ridgefield, CT, where he was a
Program Leader and a Department Manager. From
1985 to 1990, he was an Associate Professor at
the University of lllinois at Urbana-Champaign,

Professor of electrical and computer engineering and Associate Directoramid is currently a Professor teaching graduate courses in waves and fields,
the Center for Computational Electromagnetics, UIUC. He has publishethomogeneous media, and theory of microwave and optical waveguides,
over 70 articles in refereed journals and several book chapters, authoaed supervising a graduate research program. From 1989 to 1993, he was
The Finite Element Method in Electromagnetigéew York: Wiley, 1993) the Associate Director of the Advanced Construction Technology Center,
and Electromagneitc Analysis and Design in Magnetic Resonance Imagikipiversity of lllinois at Urbana-Champaign, where he is currently the Director
(Boca Rataon, FL: CRC Press, 1998), and co-authGaudputation of Special of the Center for Computational Electromagnetics and the Electromagnetics
Functions(New York: Wiley, 1996). His current research interests includéaboratory. His name is listed in the universityist of Excellent Instructors
computational electromagnetics, scattering and antenna analysis, electronrighas authoretiVaves and Fields in Inhomogeneous Me@igw York: Van
netic compatibility, and magnetic resonance imaging. He is a member of tNestrand, 1990), published over 175 scientific journal articles, and presented
Editorial Board ofElectromagnetics Journal over 200 conference papers. His recent research interest has been in the area
Dr. Jin is a member of Tau Beta Pi and Commission B of USNC/URSI. Hef wave propagation, scattering, inverse scattering, and fast algorithms related
serves as an associate editor of the IEEEANEACTIONS ON ANTENNAS AND  tO scattering, inhomogeneous media for geophysical subsurface sensing, and
ProraGaTION. He was a recipient of the 1994 National Science Foundatiamondestructive testing applications, He has also previously analyzed electro-
Young Investigator Award, 1995 Office of Naval Research Young Investigatohemical effects and dielectric properties of composite materials, microwave
Award, and 1997 Junior Xerox Research Award presented by the UIW®d optical waveguides, and microstrip antennas. He is an associate editor of
College of Engineering. Journal of Electromagnetic Waves and Applicatiared Microwave Optical
Technology LettersHe was also an associate editor with tmeernational
Journal of Imaging Systems and Technologyd has been a guest editor of
Radio Science, International Journal of Imaging Systems and Technalody,
Electromagnetics.
Dr. Chew is a member of Eta Kappa Nu, Tau Beta Pi, URSI Commissions
B and F, and the Society of Exploration Geophysics. He has been an Ad
Com member of the IEEE Geoscience and Remote Sensing Society, and is
currently an associate editor of the IEERANSACTIONS ON GEOSCIENCE AND
RemMoTE SensING. He was a National Science Foundation (NSF) Presidential
Young Investigator in 1986.



